Carbon-Nitrogen Interactions in Terrestrial Ecosystems in Response to Rising Atmospheric Carbon Dioxide
نویسندگان
چکیده
Interactions involving carbon (C) and nitrogen (N) likely modulate terrestrial ecosystem responses to elevated atmospheric carbon dioxide (CO2) levels at scales from the leaf to the globe and from the second to the century. In particular, response to elevated CO2 may generally be smaller at low relative to high soil N supply and, in turn, elevated CO2 may influence soil N processes that regulate N availability to plants. Such responses could constrain the capacity of terrestrial ecosystems to acquire and store C under rising elevated CO2 levels. This review highlights the theory and empirical evidence behind these potential interactions. We address effects on photosynthesis, primary production, biogeochemistry, trophic interactions, and interactions with other resources and environmental factors, focusing as much as possible on evidence from long-term field experiments. 611 A nn u. R ev . E co l. E vo l. Sy st . 2 00 6. 37 :6 11 -6 36 . D ow nl oa de d fr om a rj ou rn al s. an nu al re vi ew s. or g by 7 5. 40 .1 34 .2 4 on 1 2/ 31 /0 6. F or p er so na l u se o nl y. ANRV292-ES37-22 ARI 17 October 2006 7:34
منابع مشابه
MIT Joint Program on the Science and Policy of Global Change Consequences of Considering Carbon/Nitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle
A number of observational studies indicate that carbon sequestration by terrestrial ecosystems in a world with an atmosphere richer in carbon dioxide and a warmer climate depends on the interactions between the carbon and nitrogen cycles. However, most terrestrial ecosystem models being used in climate-change assessments do not take into account these interactions. Here we explore how carbon/ni...
متن کاملImpacts of rising atmospheric carbon dioxide on model terrestrial ecosystems
In model terrestrial ecosystems maintained for three plant generations at elevated concentrations of atmospheric carbon dioxide, increases in photosynthetically fixed carbon were allocated below ground, raising concentrations of dissolved organic carbon in soil. These effects were then transmitted up the decomposer food chain. Soil microbial biomass was unaffected, but the composition of soil f...
متن کاملConsequences of Considering Carbon–Nitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle
The impact of carbon–nitrogen dynamics in terrestrial ecosystems on the interaction between the carbon cycle and climate is studied using an earth system model of intermediate complexity, the MIT Integrated Global Systems Model (IGSM). Numerical simulations were carried out with two versions of the IGSM’s Terrestrial Ecosystems Model, one with and one without carbon–nitrogen dynamics. Simulatio...
متن کاملTerrestrial nitrogen-carbon cycle interactions at the global scale.
Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitroge...
متن کاملContributions of nitrogen deposition and forest regrowth to terrestrial carbon uptake
BACKGROUND The amount of reactive nitrogen deposited on land has doubled globally and become at least five-times higher in Europe, Eastern United States, and South East Asia since 1860 mostly because of increases in fertilizer production and fossil fuel burning. Because vegetation growth in the Northern Hemisphere is typically nitrogen-limited, increased nitrogen deposition could have an attenu...
متن کامل